Brain Tumor Monitoring System Documentation ========================================== Welcome to the comprehensive documentation for the Brain Tumor Monitoring System, a sophisticated MLOps solution for monitoring and detecting data drift in brain tumor image classification models. .. toctree:: :maxdepth: 2 :caption: Contents: introduction installation quickstart architecture api/index monitoring/index ml/index frontend/index contributing Overview -------- The Brain Tumor Monitoring System is designed to provide comprehensive monitoring capabilities for machine learning models that classify brain tumor images. The system includes: * **Real-time Monitoring**: Continuous monitoring of model predictions and data quality * **Drift Detection**: Advanced algorithms to detect data drift in image features * **Automated Reporting**: HTML reports with visualizations using Evidently AI * **RESTful API**: FastAPI-based backend with comprehensive endpoints * **Modern Frontend**: React-based dashboard with real-time updates * **Cloud Deployment**: Ready for deployment on GCP, AWS, or Azure Key Features ------------ * **Image Feature Extraction**: Comprehensive feature extraction from brain tumor images * **Statistical Analysis**: Mean, standard deviation, entropy, and other statistical measures * **Drift Detection**: Customizable thresholds for detecting significant data drift * **Dashboard**: Real-time monitoring dashboard with key metrics * **API Integration**: Seamless integration with existing ML pipelines * **Scalable Architecture**: Designed for production deployment Quick Start ----------- .. code-block:: bash # Clone the repository git clone cd brain-tumor-monitoring # Install dependencies pip install -r requirements.txt # Set up database export DATABASE_URL="postgresql://user:password@localhost:5432/monitoring" # Run the backend uvicorn backend.src.api:app --reload # Run the frontend cd frontend && npm install && npm start For detailed installation instructions, see :doc:`installation`. API Reference ------------- The system provides a comprehensive REST API for monitoring operations: * **Health Checks**: `/health` * **Monitoring Dashboard**: `/monitoring/dashboard` * **Drift Reports**: `/monitoring/drift-report` * **Feature Analysis**: `/monitoring/feature-analysis` * **Data Quality**: `/monitoring/data-quality` For complete API documentation, see :doc:`api/index`. Monitoring System ---------------- The monitoring system provides: * **Feature Extraction**: Automatic extraction of image features * **Drift Detection**: Statistical analysis for data drift * **Reporting**: HTML reports with visualizations * **Alerting**: Configurable alerts for drift detection For detailed monitoring documentation, see :doc:`monitoring/index`. Machine Learning --------------- The ML pipeline includes: * **Model Training**: YOLOv8-based tumor detection * **Prediction Pipeline**: Real-time image classification * **Feature Engineering**: Comprehensive feature extraction * **Model Versioning**: Version control for ML models For ML documentation, see :doc:`ml/index`. Frontend Dashboard ----------------- The React-based frontend provides: * **Real-time Monitoring**: Live updates of system metrics * **Interactive Charts**: Visual representation of drift data * **Report Viewer**: HTML report display * **Responsive Design**: Mobile-friendly interface For frontend documentation, see :doc:`frontend/index`. Contributing ----------- We welcome contributions! Please see :doc:`contributing` for guidelines. Indices and tables ================== * :ref:`genindex` * :ref:`modindex` * :ref:`search`